Мутация - это изменение генома. Основные виды и примеры

Как возникают вредоносные гены?

Хотя основное свойство генов заключается в точном самокопировании, благодаря чему и происходит наследственная передача множества признаков от родителей к детям, свойство это не является абсолютным. Природа генетического материала двойственна. Гены обладают еще и способностью изменяться, приобретать новые свойства. Такие изменения генов называются мутациями. И именно мутации генов создают изменчивость, необходимую для эволюции живой материи, многообразия форм жизни. Мутации возникают в любых клетках организма, но передаваться потомству могут только гены половых клеток.

Причины мутаций заключаются в том, что многие факторы внешней среды, с которыми на протяжении жизни взаимодействует каждый организм, могут нарушать строгую упорядоченность процесса самовоспроизведения генов, хромосом в целом, приводить к ошибкам в наследовании. В экспериментах установлены следующие факторы, вызывающие мутации: ионизирующее излучение, химические вещества и высокая температура. Очевидно, что все эти факторы имеются и в естественной среде обитания человека (например, естественный фон радиации, космического излучения). Мутации существовали всегда как вполне обычное природное явление.

Будучи в своей сути ошибками в передаче генетического материала, мутации носят случайный и ненаправленный характер, то есть могут быть как полезными, так и вредными и относительно нейтральными для организма.

Полезные мутации закрепляются в ходе эволюции и составляют основу прогрессивного развития жизни на Земле, а вредные - снижающие жизнеспособность, являются как бы обратной стороной медали. Они и лежат в основе наследственных болезней во всем их многообразии.

Мутации бывают двух типов:

  • генные (на молекулярном уровне)
  • и хромосомные (меняющие число или структуру хромосом на клеточном уровне)

Как те, так и другие могут вызываться одними и теми же факторами.

Как часто возникают мутации?
Часто ли появление больного ребенка связано с новой мутацией?

Если бы мутации возникали слишком часто, то изменчивость в живой природе преобладала бы над наследственностью и никаких устойчивых форм жизни не существовало бы. С очевидностью логика подсказывает, что мутации являются редкими событиями, во всяком случае намного более редкими, чем возможность сохранения свойств генов при передаче от родителей к детям.

Реальная частота мутаций для отдельных генов человека составляет в среднем от 1:105 до 1:108. Это значит, что примерно одна из миллиона половых клеток в каждом поколении несет новую мутацию. Или, другими словами, хотя это и упрощение, можно сказать, что на миллион случаев нормальной передачи гена приходится один случай мутации. Важно то обстоятельство, что, однажды возникнув, та или иная новая мутация может затем передаваться в последующие поколения, то есть закрепляться механизмом наследования, поскольку обратные мутации, возвращающие ген в исходное состояние, столь же редки.

В популяциях соотношение в численности мутантов и унаследовавших вредоносный ген от родителей (сегрегантов) среди всех больных зависит как от типа наследования, так и от их способности оставлять потомство. При классических рецессивных заболеваниях вредная мутация может незаметно передаваться через множество поколений здоровых носителей до тех пор, пока в брак не вступят два носителя одного и того же вредного гена, и тогда практически каждый такой случай рождения больного ребенка связан с наследованием, а не с новой мутацией.

При доминантных же заболеваниях доля мутантов находится в обратной зависимости от детородной способности больных. Очевидно, что когда заболевание приводит к ранней смерти или неспособности больных иметь детей, то наследование заболевания от родителей невозможно. Если же заболевание не сказывается на продолжительности жизни или способности иметь детей, то, наоборот, будут преобладать унаследованные случаи, а новые мутации будут редки по сравнению с ними.

Например, при одной из форм карликовости (доминантной ахондроплазии) по социальным и биологическим причинам размножение карликов значительно ниже среднего, в этой группе населения примерно в 5 раз меньше детей по сравнению с другими. Если принять средний коэффициент размножения в норме за 1, то для карликов он будет равен 0,2. Это означает, что 80 % больных в каждом поколении - результат новой мутации, и только 20 % больных наследуют карликовость от родителей.

При наследственных заболеваниях, генетически сцепленных с полом, доля мутантов среди больных мальчиков и мужчин также зависит от относительной плодовитости больных, но здесь всегда будут преобладать случаи наследования от матерей, даже при тех болезнях, когда больные вообще не оставляют потомства. Максимальная доля новых мутаций при таких летальных заболеваниях не превышает 1/3 части случаев, поскольку на долю мужчин приходится именно одна треть Х-хромосом всего населения, а две трети их приходится на женщин, которые, как правило, бывают здоровыми.

Может ли у меня родиться ребенок с мутацией, если я получил повышенную дозу облучения?

Отрицательные последствия загрязнения окружающей среды как химического, так и радиоактивного - проблема века. Генетики сталкиваются с ней не так редко, как хотелось бы в широком спектре вопросов: от профессиональных вредностей до ухудшения экологической ситуации в результате аварий на атомных электростанциях. И понятна обеспокоенность, например людей, переживших чернобыльскую трагедию.

Генетические последствия загрязнения окружающей среды действительно связаны с увеличением частоты мутаций, в том числе и вредных, приводящих к наследственным болезням. Однако эти последствия, к счастью, не столь катастрофичны, чтобы говорить об опасности генетического вырождения человечества, по крайней мере на современном этапе. Кроме того, если рассматривать проблему относительно конкретных лиц и семей, то можно с уверенностью сказать, что риск рождения больного ребенка из-за облучения или иного вредного воздействия именно в результате мутации никогда не бывает высоким.

Частота мутаций хотя и повышается, но не настолько, чтобы превысить десятую, а то и сотую долю процента. Во всяком случае для любого человека, даже подвергшегося явному воздействию мутагенных факторов, риск отрицательных последствий для потомства намного меньше, чем свойственный всем людям генетический риск, связанный с носительством патологических генов, унаследованных от предков.

Кроме того, далеко не все мутации приводят к немедленному проявлению в виде заболевания. Во многих случаях, даже если ребенок получит новую мутацию от одного из родителей, он родится совершенно здоровым. Ведь значительная часть мутаций является рецессивными, то есть не проявляет своего вредного действия у носителей. А таких случаев, чтобы при исходно нормальных генах обоих родителей ребенок получил одну и ту же новую мутацию одновременно от отца и матери, практически не бывает. Вероятность подобного случая так ничтожно мала, что для ее реализации недостаточно всего населения Земли.

Из этого также следует, что повторное возникновение мутации в одной и той же семье практически нереально. Поэтому, если у здоровых родителей появился больной ребенок с доминантной мутацией, то их остальные дети, то есть братья и сестры больного, должны быть здоровыми. Однако для потомства больного ребенка риск унаследования заболевания составит 50 % в соответствии с классическими правилами.

Бывают ли отклонения от обычных правил наследования и с чем они связаны?

Да, бывают. Как исключение - иногда лишь в силу своей редкости, как, например, появление больных гемофилией женщин. Встречаются и чаще, но в любом случае отклонения обусловлены сложными и многочисленными взаимосвязями генов в организме и их взаимодействием с окружающей средой. По сути дела, исключения отражают все те же фундаментальные законы генетики, но на более сложном уровне.

Например, для многих доминантно наследуемых заболеваний характерна сильная изменчивость их выраженности, вплоть до того, что иногда симптомы заболевания у носителя патологического гена могут вообще отсутствовать. Это явление называется неполной пенетрантностью гена. Поэтому в родословных семей с доминантными заболеваниями иногда встречаются так называемые проскакивающие поколения, когда заведомые носители гена, имеющие как больных предков, так и больных потомков, практически здоровы.

В некоторых случаях при более тщательном обследовании таких носителей обнаруживаются хотя и минимальные, стертые, но вполне определенные проявления. Но бывает и так, что имеющимися в нашем распоряжении методами никаких проявлений патологического гена обнаружить не удается, несмотря на явные генетические доказательства того, что он есть у конкретного человека.

Причины этого явления изучены пока недостаточно. Считается, что вредный эффект мутантного гена может быть модифицирован и компенсирован другими генами или внешнесредовыми факторами, но конкретные механизмы такой модификации и компенсации при тех или иных заболеваниях неясны.

Бывает и так, что в некоторых семьях, в нескольких поколениях подряд передаются рецессивные заболевания так, что их можно спутать с доминантными. Если больные вступают в брак с носителями гена того же заболевания, то половина их детей также наследует "двойную дозу" гена - условие, необходимое для проявления заболевания. То же самое может произойти и в следующих поколениях, хотя такая "казуистика" встречается только при многократных кровнородственных браках.

Наконец, не носит абсолютного характера и деление признаков на доминантные и рецессивные. Иногда это деление просто условно. Один и тот же ген можно в одних случаях считать доминантным, а в других - рецессивным.

Применяя тонкие методы исследования, нередко можно распознать действие рецессивного гена в гетерозиготном состоянии, даже у совершенно здоровых носителей. Например, ген серповидноклеточного гемоглобина в гетерозиготном состоянии обусловливает серповидную форму эритроцитов, что не сказывается на здоровье человека, а в гомозиготном приводит к тяжелому заболеванию - серповидно-клеточной анемии.

В чем отличие генных и хромосомных мутаций.
Что такое хромосомные болезни?

Хромосомы являются носителями генетической информации на более сложном - клеточном уровне организации. Наследственные болезни могут быть вызваны и хромосомными дефектами, возникшими при образовании половых клеток.

Каждая хромосома содержит свой набор генов, располагающихся в строгой линейной последовательности, то есть те или иные гены располагаются не только в одних и тех же у всех людей хромосомах, но и в одних и тех же участках этих хромосом.

Нормальные клетки организма содержат строго определенное число парных хромосом (отсюда и парность находящихся в них генов). У человека в каждой клетке, кроме половых, 23 пары (46) хромосом. Половые клетки (яйцеклетки и сперматозоиды) содержат 23 непарные хромосомы - одинарный набор хромосом и генов, так как парные хромосомы расходятся в процессе клеточного деления. При оплодотворении, когда сперматозоид и яйцеклетка сливаются, из одной клетки (теперь уже с полным двойным набором хромосом и генов) развивается плод - эмбрион.

Но образование половых клеток происходит иногда с хромосомными "ошибками". Это мутации, приводящие к изменению числа или структуры хромосом в клетке. Вот почему оплодотворенная яйцеклетка может содержать избыток или недостаток хромосомного материала по сравнению с нормой. Очевидно, что такой хромосомный дисбаланс приводит к грубым нарушениям развития плода. Проявляется это в виде самопроизвольных выкидышей и мертворождений, наследственных болезней, синдромов, получивших название хромосомных.

Наиболее известным примером хромосомной болезни является болезнь Дауна (трисомия - появление лишней 21-й хромосомы). Симптомы этого заболевания легко выявляются по внешнему виду ребенка. Это и кожная складка во внутренних углах глаз, которая придает лицу монголоидный вид, и большой язык, короткие и толстые пальцы, при тщательном обследовании у таких детей обнаруживаются и пороки сердца, зрения и слуха, умственная отсталость.

К счастью, вероятность повторения в семье этой болезни и многих других хромосомных аномалий мала: в подавляющем большинстве случаев они обусловлены случайными мутациями. Кроме того, известно, что хромосомные мутации случайного характера чаще происходят в конце детородного периода.

Так, с увеличением возраста матерей увеличивается и вероятность хромосомной ошибки во время созревания яйцеклетки, и следовательно, такие женщины имеют повышенный риск рождения ребенка с хромосомными нарушениями. Если общая частота появления синдрома Дауна среди всех новорожденных детей составляет примерно 1:650, то для потомства молодых матерей (25 лет и моложе) она существенно ниже (менее 1:1000). Индивидуальный риск достигает среднего уровня к 30-летнему возрасту, выше он к 38 годам - 0,5 % (1:200), а к 39 годам - 1 % (1:100), в возрасте же свыше 40 лет возрастает до 2-3 %.

А могут ли быть здоровыми люди, имеющие хромосомные аномалии?

Да, могут при некоторых типах хромосомных мутаций, когда изменяется не число, а структура хромосом. Дело в том, что структурные перестройки в первоначальный момент своего появления могут оказаться сбалансированными - не сопровождаться избытком или недостатком хромосомного материала.

Например, могут обменяться своими участками, несущими разные гены, две непарные хромосомы, если при разрывах хромосом, иногда наблюдающихся в процессе клеточного деления, их концы становятся как бы липкими и склеиваются со свободными фрагментами других хромосом. В результате таких обменов (транслокаций) число хромосом в клетке сохраняется, но так возникают новые хромосомы, в которых нарушен принцип строгой парности генов.

Другая разновидность транслокаций - склеивание двух практически целых хромосом своими "липкими" концами, в результате чего общее число хромосом уменьшается на одну, хотя потери хромосомного материала не происходит. Человек - носитель такой транслокации, совершенно здоров, однако имеющиеся у него сбалансированные структурные перестройки уже не случайно, а вполне закономерно приводят к хромосомному дисбалансу в его потомстве, поскольку существенная часть половых клеток носителей таких транслокаций имеет лишний или, наоборот, недостаточный хромосомный материал.

Иногда такие носители вообще не могут иметь здоровых детей (правда, подобные ситуации исключительно редки). Например, у носителей подобной хромосомной аномалии - транслокации между двумя одинаковыми хромосомами (скажем, слияние концов той же 21-й пары), 50 % яйцеклеток или сперматозоидов (в зависимости от пола носителя) содержат 23 хромосомы, включая сдвоенную, а остальные 50 % содержат на одну хромосому меньше, чем полагается. При оплодотворении же клетки со сдвоенной хромосомой получат еще одну, 21-ю хромосому, и в результате будут рождаться дети с болезнью Дауна. Клетки же с недостающей 21-й хромосомой при оплодотворении дают нежизнеспособный плод, который спонтанно абортируется в первой половине беременности.

Носители транслокаций других типов могут иметь и здоровое потомство. Однако существует риск хромосомного дисбаланса, приводящего к грубой патологии развития в потомстве. Этот риск для потомства носителей структурных перестроек существенно выше, чем риск появления хромосомных аномалий в результате случайных новых мутаций.

Кроме транслокаций, существуют и другие типы структурных перестроек хромосом, приводящих к сходным негативным последствиям. К счастью, наследование хромосомных аномалий с высоким риском патологии встречается в жизни намного реже, чем случайные хромосомные мутации. Соотношение случаев хромосомных болезней среди их мутантных и наследственных форм, примерно 95 % и 5 % соответственно.

Сколько уже известно наследственных болезней?
Увеличивается или уменьшается их число в истории человечества?

Исходя из общебиологических представлений, можно было бы ожидать примерного соответствия между числом хромосом в организме и числом хромосомных болезней (и точно так же между числом генов и генных болезней). И действительно, в настоящее время известно несколько десятков хромосомных аномалий со специфическими клиническими симптомами (что фактически превышает число хромосом, потому что разные количественные и структурные изменения одной и той же хромосомы обусловливают разные болезни).

Намного больше и превышает 2000 число известных болезней, вызванных мутациями единичных генов (на молекулярном уровне). Подсчитано, что число генов во всех хромосомах человека намного больше. Многие из них не являются уникальными, так как представлены в виде многократно повторяющихся копий в разных хромосомах. Кроме того, многие мутации могут проявляться не в виде заболеваний, а приводить к эмбриональной гибели плода. Так что и число генных болезней примерно соответствует генетической структуре организма.

По мере развития медико-генетических исследований во всем мире число известных наследственных болезней постепенно увеличивается, а многие из них, ставшие классическими, были известны людям очень давно. Сейчас в генетической литературе наблюдается своеобразный бум публикаций о предположительно новых случаях и формах наследственных болезней и синдромов, многие из которых принято называть по именам первооткрывателей.

Каждые несколько лет известнейший американский генетик Виктор Мак-Кьюсик издает каталоги наследственных признаков и болезней человека, составляемые на основании компьютерного анализа данных мировой литературы. И всякий раз каждое последующее издание отличается от предыдущего увеличивающимся числом таких болезней. Очевидно, что тенденция эта будет сохраняться и далее, но скорее она отражает улучшение распознавания наследственных болезней и более пристальное внимание к ним, чем реальное увеличение их числа в процессе эволюции.

Что такое генная мутация и как происходит мутация?
Мутация гена является постоянным изменением в последовательности ДНК, которая составляет полный набор генов названный геном, так что после мутации в последовательности генов появляются отличия от геномов, которые можно найти в клетках большинства людей. Мутации имеют диапазон размеров; они могут изменить от одного гена до мутации значительной части хромосомы, которые содержат сотни генов.

Генные мутации могут быть классифицированы по двум основным направлениям:

Наследственные мутации наследуются от родителей и присутствуют на протяжении всей жизни человека практически в каждой клетке тела. Эти мутации также называют внутриутробной мутацией, потому что они присутствуют в яйцеклетке или спермотозоидах клеток родителей, которые также называются половыми клетками. Когда яйцо и сперматозоид соединяются, в результате оплодотворенная яйцеклетка получает ДНК от обоих родителей. Если эта ДНК содержит мутацию, ребенок, который растет из оплодотворенной яйцеклетки будут иметь мутацию в каждой из своих клеток.

Приобретенные (или соматические) мутации происходят в какой-то момент во время жизни человека и присутствуют только в некоторых клетках, таких мутаций нет в каждой клетке в теле. Эти изменения могут быть вызваны факторами окружающей среды, таких как ультрафиолетовое излучение от солнца или может произойти ошибка при копированнии ДНК во время клеточного деления. Приобретенные мутации в соматических клетках (кроме спермы и яйцеклеток) не могут быть переданы на следующем поколении.

De Novo (новые) мутации могут быть либо наследственными либо соматическими. В некоторых случаях, мутация происходит в яйцелетке или сперматозоиде человека, но не присутствует в других клетках человека. В редких случаях, мутация происходит в оплодотворенной яйцеклетки вскоре после того, яйцо и сперматозоиды объединяются. (в таких случаях часто невозможно точно сказать,в каком участке мутация произошла.) Когда оплодотворенная яйцеклетка начнет делится, каждая клетка растущего эмбриона будет иметь мутацию. Новые мутации могут объяснить генетические нарушения, при которых больной ребенок имеет мутацию в каждой клетке в теле, но родители не имели таких мутаций, и мутаций небыло в истории заболевания.

Соматические мутации , которые происходят в одной ячейке в начале эмбрионального развития могут привести к ситуации, называемой мозаичность. Эти генетические изменения не присутствует в яяцеклетках или сперматозоидах родителей, или в оплодотворенной яйцеклетки, но появляются немного позже, когда эмбрион уже начал деление и состоит из нескольких клеток. Так как все клетки делятся в процессе роста и развития, клетки, которые возникают из клетки с измененным мутацией геном будут иметь мутации, в то время как в других клетках таких мутаций не будут. В зависимости от масштабы мутации и сколько клеток подверглось мутации, мозаицизм может вызвать проблемы со здоровьем либо не затронуть здоровье вообще.

Большинство болезнетворных генных мутаций редко появляются в общей популяции вида. Тем не менее, другие генетические изменения происходят более часто. Генетические изменения, которые происходят более чем у 1 процента населения называют полиморфизмом. Они настолько часто встречаются, что сейчас их считают нормальными изменениями в ДНК. Полиморфизм несет ответственность за многие обычные различия между людьми, например, цвет глаз, цвет волос и тип крови.

Мутациями называются спонтанные изменения в структуре ДНК живых организмов, ведущие к возникновению всевозможных отклонений в росте и развитии. Итак, рассмотрим, что такое мутация, причины ее возникновения и существующие в Стоит также обратить внимание на влияние изменений генотипа на природу.

Ученые заявляют, что мутации существовали всегда и присутствуют в организмах абсолютно всех живых существ на планете, более того, их может наблюдаться до нескольких сотен в одном организме. Проявление же их и степень выраженности зависят от того, какими причинами они были спровоцированы и какая генетическая цепочка пострадала.

Причины мутаций

Причины мутаций могут быть самыми разнообразными, и возникнуть они могут не только естественным путем, но и искусственно, в лабораторных условиях. Ученые-генетики выделяют следующие факторы возникновения изменений:

2) генные мутации - изменения в последовательности построения нуклеотидов при образовании новых цепочек ДНК (фенилкетонурия).

Значение мутаций

В большинстве случаев они наносят вред всему организму, поскольку мешают его нормальному росту и развитию, и иногда приводят к смерти. Полезные мутации не встречаются никогда, даже если они наделяют сверхспособностями. Они становятся предпосылкой для активного действия и влияют на селекцию живых организмов, приводя к появлению новых видов или вырождению. Таким образом, отвечая на вопрос: «Что такое мутация?» - стоит отметить, что это малейшие изменения в структуре ДНК, нарушающие развитие и жизнедеятельность всего организма.

Классификация мутаций по фенотипу:
Классификации мутаций:
по Мёллеру

  • Гипоморфные мутации.
Измененные аллели действуют в том же направлени, что и аллели дикого типа. Синтезируется лишь меньше белкового продукта. группа мутаций по характеру их проявления. Действуют в том же направлении, что и нормальный аллель, но дают несколько ослабленный эффект. Например, у дрозофилы окраска глаз при мутации значительно бледнее.
  • Аморфные мутации.
Мутация выглядит, как полная потеря гена. Например, мутация white у Drosophila. (греч. «а» - отрицание, «морфа» - фор­ма) - группа мутаций по характеру их проявления в фенотипе. Неактивны в отношении типичного эффекта нормального аллеля . Например, ген альбинизма полностью тормозит образование пигмента у животных или хлорофилла у растений.

  • Антиморфные мутации.
Мутантный признак изменяется. Например, окраска зерна кукурузы меняется с пурпурного на бурый. (греч. «анти» - против, «морфа» - фор­ма) - группа мутаций по характеру их проявления в фенотипе. Оказывают действие, противоположное действию нормального аллеля. Так, у кукурузы исходный аллель дает пурпурную окраску семян, а мутантный - вызывает образование бурого пигмента

.

  • Неоморфные мутации.
Мутантный признак является новым. Аналогов в диком типе не имеет. (греч. «неос» - новый, «морфа» - фор­ма) - группа мутаций, нетипичных по характеру их проявле­ния в фенотипе. Их действие совершенно отлично от действия исходного нормального аллеля.

  • Гиперморфные мутации.
Количество белка значительно увеличивается. Например, мутация white eosine - глаза более тёмные.
по изменению структуры ДНК


(источник: http://elmash.snu.edu.ua/material/iskust_intel/AI/11.htm , http://xn--90aeobapscbe.xn--p1ai/%D0%91%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D1%80%D1%8C/%D0%9D/596-%D0%9D%D0%B5%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%BD%D1%8B%D0%B5-%D0%BC%D1%83%D1%82%D0%B0%D1%86%D0%B8%D0%B8)

По генотипу:

  • Генные (точковые) мутации - это изменения числа и/или последовательности нуклеотидов в структуре ДНК (вставки, выпадения, перемещения, замещения нуклеотидов) в пределах отдельных генов, приводящие к изменению количества или качества соответствующих белковых продуктов.

Замены оснований приводят к появлению трех типов мутантных кодонов : с измененным смыслом (миссенс-мутации), с неизмененным смыслом (нейтральные мутации) и бессмысленных, или терминирующих кодонов (нонсенс-мутации).

Мутации, изменяющие последовательность нуклеотидов в гене, т. е. структуру самого гена.

  1. Генные дупликации - удвоение пары или нескольких пар нуклеотидов (удвоение пары Г-Ц).

2. Генные инсерции - вставка пары или нескольких нар нукле­отидов (вставка пары Г-Ц между А-Т и Т-А).

3. Генные делеции - выпадение нуклеотидов (выпадение комплементарной пары Т-А между А-Т и Г-Ц).

4. Генные инверсии - перестановка фрагмента гена (во фраг­менте исходная последовательность нуклеотидов Т-А, Г-Ц за­меняется на обратную Г-Ц, Т-А).

5. Замены нуклеотидов - замена пары нуклеотидов на другую; при этом общее число нуклеотидов не меняется (замена Т-А на Ц-Г). Один из наиболее частых типов мутаций. Дупликации, инсерции и делеции могут приводить к измене­нию рамки считывания генетического кода. Рассмотрим это на примере. Возьмем следующую исходную последовательность нуклеотидов в ДНК (для простоты будем рассматривать только одну ее цепь): АТГАЦЦГЦГА... Она будет считываться следую­щими триплетами: АТГ, АЦЦ, ГЦГ, А... Допустим, произошла делеция, и в самом начале последовательности между А и Г вы­пал нуклеотид Т. В результате этой мутации получится изме­ненная последовательность нуклеотидов: АГАЦЦГЦГА, кото­рая уже будет считываться совершенно иными триплетами: АГА, ЦЦГ, ЦГА. Поэтому в полипептидную цепь будут соеди­няться совершенно другие аминокислоты и, таким образом, бу­дет синтезироваться мутантный белок, совершенно непохожий на нормальный. Кроме того, в результате генных мутаций, при­водящих к сдвигу рамки, могут образовываться терминирую­щие кодоны ТАА, ТАГ или ТГА, прекращающие синтез. Выпадение целого триплета приводит к менее тяжелым генети­ческим последствиям, чем выпадение одного или двух нуклео­тидов. Рассмотрим ту же нуклеотидную последовательность: АТГАЦЦГЦГА... Допустим, произошла делеция, и выпал це­лый триплет АЦЦ. Мутантный ген будет иметь измененную по­следовательность нуклеотидов АТГГЦГА, которая будет считы­ваться следующими триплетами: АТГ, ГЦГ, А... Видно, что после выпадения триплета рамка считывания не сдвинулась, синтезированный белок хоть и будет на одну аминокислоту от­личаться от нормального, но в целом будет весьма на него по­хож. Однако это отличие в аминокислотном составе может при­вести к изменению третичной структуры белка, которая в основном и определяет его функции, и функция мутантного белка, скорее всего, будет снижена по сравнению с нормальным белком. Этим и объясняется тот факт, что мутации, как прави­ло, рецессивны.

Генные мутации проявляются фенотипически в результате син­теза соответствующих белков:

Генные мутации приводят к изменению строения молекул белков и к появлению новых признаков и свойств (например, альбиносы у животных и растений, махровость у цветков за счет преобразования тычинок в лепестки и снижение их плодовитости, образование летальных и полулетальных генов, вызывающих гибель организма, и т. д.). Генные мутации происходят пoд влиянием мутагенных факторов (биологических, физических химических) или спонтанно (случайно). Генные мутации свойственны и генетической РНК вирусов.

  • Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом ( рис. 118 , Б). Разные виды геномных мутаций называют гетероплоидией и полиплоидией .

Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия.

Полиплоидия - увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей.

Исключительно велика роль полиплоидии в происхождении культурных растений и их селекции. Полиплоидными являются все или большинство культивируемых сортов пшеницы, овса, риса, сахарного тростника, арахиса, свеклы, картофеля, сливы, яблони, груши, апельсина, лимона, земляники, малины. К этому перечню следует добавить тимофеевку, люцерну, табак, хлопчатник, розы, тюльпаны, хризантемы, гладиолусы и многие другие, возделываемые человеком, культуры. Аутополиплоидные мутанты растений обычно крупнее исходной формы. Тетраплоиды, как правило, имеют большую вегетативную массу. Однако у них может резко уменьшиться плодовитость из-за нерасхождения поливалентов в мейозе. Триплоиды - крупные и мощные растения, но полностью или почти полностью стерильные, поскольку продуцируемые ими гаметы содержат неполный набор хромосом. Аутополинлоидные виды размножают вегетативным способом, поскольку плоды таких растений не содержат семян.

Анеуплоидия - изменение (уменьшение - моносомия, увеличение - трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая - без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

*Трисомия - наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре - синдрома Эдвардса; по 13-й паре - синдрома Патау).

*Моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека - по хромосоме X - приводит к развитию синдрома Шерешевского-Тернера (45,Х0).

*Тетрасомия и пентасомия: Тетрасомия (4 гомологичные хромосомы вместо пары в диплоидном наборе) и пентасомия (5 вместо 2-х) встречаются чрезвычайно редко. Примерами тетрасомии и пентасомии у человека могут служить кариотипы XXXX, XXYY, XXXY, XYYY, XXXXX, XXXXY, XXXYY, XYYYY и XXYYY. Как правило, с нарастанием количества "лишних" хромосом увеличивается тяжесть и выраженность клинических симптомов.

Гаплоидия , - противоположное полиплоидии явление, заключающееся в кратном уменьшении числа хромосом у потомства в сравнении с материнской особью. Гаплоидия , как правило, - результат развития зародыша из редуцированных (гаплоидных) гамет или из функционально равноценных им клеток путём апомиксиса , т. е. без оплодотворения. Гаплоидия редко встречается в животном мире, но распространена у цветковых растений: зарегистрирована более чем у 150 видов растений из 70 родов 33 семейств (в т. ч. из семейства злаков, паслёновых, орхидных, бобовых и др.). Известна у всех основных культурных растений: пшениц, ржи, кукурузы, риса, ячменя, сорго, картофеля, табака, хлопка, льна, свёклы, капусты, тыквы, огурцов, томатов; у кормовых трав: мятликов, костра, тимофеевки, люцерны, вики и др. Гаплоидия генетически детерминирована и встречается у некоторых видов и сортов с определённой частотой (например, у кукурузы - 1 гаплоид на 1000 диплоидных растений). В эволюции видов Гаплоидия служит своеобразным механизмом, снижающим уровень плоидности . Гаплоидия пользуются для решения ряда генетических проблем: выявления эффекта дозы гена, получения анеуплоидов, для исследования генетики количественных признаков, генемного анализа и др. В селекции растений Гаплоидия пользуются для получения из гаплоидов путём удвоения у них числа хромосом гомозиготных линий, равноценных самоопылённым линиям при производстве гибридных семян (например, у кукурузы), а также для перевода селекционного процесса с полиплоидного на диплоидный уровень (например, у картофеля). Особая форма Гаплоидия - андрогенез , при котором ядро спермия замещает ядро яйцеклетки, используется для получения мужских стерильных аналогов у кукурузы.

Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. При них последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу, что пагубно сказывается на нормальном развитии организма.

Виды аберраций и их механизмы представлены на рисунке.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации .

Хромосомные аберрации (хромосомные мутации , хромосомные перестройки) - тип мутаций, которые изменяют структуру хромосом . Классифицируют делеции (утрата участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую), а также дицентрические и кольцевые хромосомы. Известны также изохромосомы, несущие два одинаковых плеча. Если перестройка изменяет структуру одной хромосомы, то такую перестройку называют внутрихромосомной (инверсии, делеции, дупликации, кольцевые хромосомы), если же двух разных, то межхромосомной (дупликации, транслокации, дицентрические хромосомы). Хромосомные перестройки подразделяют также на сбалансированные и несбалансированные. Сбалансированные перестройки (инверсии, реципрокные транслокации) не приводят к потере или добавлению генетического материала при формировании, поэтому их носители, как правило, фенотипически нормальны. Несбалансированные перестройки (делеции и дупликации) меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с клиническими отклонениями от нормы.

Внутрихромосомные аберрации - аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.

*Делеция - утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.

*Инверсия - встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

*Дупликация - удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные аберрации - обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).

* Реципрокные скрещивания - два эксперимента по скрещиванию, характеризующиеся прямо противоположным сочетанием пола и исследуемого признака. В одном эксперименте самца, имеющего определенный доминантный признак , скрещивают с самкой, имеющий рецессивный признак . Во втором, соответственно, скрещивают самку с доминантным признаком и самца с рецессивным признаком.
Реципрокные транслокации являются сбалансированной хромосомной перестройкой, при их формировании не происходит потери генетического материала. Они являются одной из самых распространенных хромосомных аномалий в человеческой популяции, частота носительства варьирует от 1/1300 до 1/700 . Носители реципрокных транслокаций, как правило, фенотипически нормальны, при этом имеют повышенную вероятность бесплодия, сниженной фертильности, спонтанных выкидышей и рождения детей с врождёнными наследственными заболеваниями, так как половина гамет у них генетически несбалансирована из-за неравновесного расхождения перестроенных хромосом в мейозе.

Изохромосомные аберрации - образование одинаковых, но зеркальных фрагментов двух разных хромосом , содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название - центрическое соединение).

(аберрации, перестройки) - изменения положения участков хромосом; приводят к изменению размеров и формы хромосом. В эти изменения могут быть вовлечены как участки одной хромосомы, так и участки разных, негомологич­ных хромосом, поэтому хромосомные мутации (перестройки) подразделяются на внутри- и межхромосомные.

А. Внутрихромосомные мутации

1. Хромосомные дупликации - удвоение участка хромосомы.

2. Хромосомные делеции - утрата хромосомой какого-либо участка.

Хромосомные инверсии - разрыв хромосомы, переворачива­ние оторвавшегося участка на 180° и встраивание его на прежнее место. Б. Межхромосомные мутации

1.Транслокация - обмен участками между негомологичными хромосомами (в мейозе).тип хромосомных мутаций , при которых происходит перенос участка хромосомы на негомологичную хромосому . Отдельно выделяют реципрокные транслокации, при которых происходит взаимный обмен участками между негомологичными хромосомами, и Робертсоновские транслокации, или центрические слияния, при которых происходит слияние акроцентрических хромосом с полной или частичной утратой материала коротких плеч. Транслокации, также как и другие , лейкозов .

2.Транспозиция - включение участка хромосомы в другую, негомологичную хромосому без взаимного обмена.

Оценка за работу: 5

Энциклопедичный YouTube

    1 / 5

    ✪ 5 УЖАСНЫХ мутаций человека, которые ШОКИРОВАЛИ ученых

    ✪ Виды мутаций. Генные мутации

    ✪ 10 СУМАСШЕДШИХ МУТАЦИЙ ЧЕЛОВЕКА

    ✪ Виды мутаций. Геномные и хромосомные мутации

    ✪ Урок биологии №53. Мутации. Виды мутаций.

    Субтитры

    Ник Вуйчич родился с редким наследственным заболеванием под названием синдром Тетра-Амелия. У мальчика отсутствовали полноценные руки и ноги, но имелась одна частичная стопа с двумя сросшимися пальцами; это позволило мальчику после хирургического разделения пальцев научиться ходить, плавать, кататься на скейте, работать на компьютере и писать. Переживая по поводу инвалидности в детстве, он научился жить со своим недостатком, делясь своим опытом с окружающими и став всемирно известным мотивационным спикером. В 2012 году Ник Вуйчич женился. И впоследствии у пары родились 2 абсолютно здоровых сына. В 2015 году в Египте родился младенец с одним глазом посередине лба. Врачи сказали, что новорожденный мальчик страдает от циклопии - необычного заболевания, название которого происходит от одноглазых гигантов из греческой мифологии. Заболевание стало следствием радиационного облучения в утробе матери. Циклопия является одним из самых редких форм врожденных дефектов. Дети, рожденные с этим заболеванием, зачастую умирают вскоре после рождения, так как они часто имеют и другие серьезные дефекты, в том числе повреждения сердца и других органов. В США в штате Айова живет Айзек Браун, у которого выявлено очень необычное заболевание. Суть этой болезни заключается в том, что ребенок не чувствует боли. По причине этого, родители Айзека вынуждены постоянно следить за своим сыном, чтобы не допустить серьезных травм ребенка. Способность мальчика не ощущать боль является следствием редкого генетического заболевания. Конечно же, мальчик при травмах испытывает боль, только эти ощущения в несколько раз слабее, чем у всех людей. Сломав ногу, Айзек понял, что с его ногой просто что-то не так, поскольку он не может как обычно ходить, но боли не было. Помимо того, что малыш не ощущает боль, у него при обследовании обнаружили ангидроз, то есть отсутствует способность регулирования температуры собственного тела. В настоящее время специалисты изучают образцы ДНК мальчика, в надежде найти дефект в генах и разработать методы лечения подобного недуга. У маленькой американки по имени Габби Уильямс редкое состояние организма. Она будет оставаться вечно молодой. Сейчас ей 11 лет и она весит 5 килограмм. При этом у нее лицо и тело ребенка. Ее странное отклонение окрестили реальной историей Бенджамина Баттона, ведь девочка стареет на год за четыре прожитых. И это - удивительное явление, над которым ломают умы десятки специалистов. Когда она родилась, то была фиолетовой и слепая. Тесты показали, что у нее была аномалия головного мозга и ее зрительный нерв был поврежден. У нее два порока сердца, волчья пасть, и аномальный глотательный рефлекс, поэтому она может есть только через трубку в носу. Также девочка совершенно немая. Малышка умеет только плакать или иногда улыбаться. Отклонений в ДНК нет, но Габби почти не стареет в сравнении с другими людьми и в чем причина - никто не знает. Хавьер Ботет страдает от редкого генетического недуга, известного как Синдром Марфана. Люди с этой болезнью отличаются высоким ростом, худобой, имеют удлиненные конечности и пальцы. Их кости не только вытянуты, но обладают еще и удивительной гибкостью. Стоит заметить, что без лечения и ухода, страдающие от Синдрома Марфана редко доживают до сорока лет. Хавьер Ботет при 2-метровом росте весит всего 45 кг. Эти специфические внешние данные, особенности физического строения и генетической системы помогли Ботет стать "своим" в фильмах ужасов. Он сыграл ужасающе худого зомби из трилогии "Репортаж", а также жутких призраков в фильмах "Мама", "Багровый пик" и "Заклятие 2".

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 {\displaystyle 10^{-9}} - 10 − 12 {\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК

Таутомерная модель мутагенеза

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах

© 2024 gobelinland.ru
Сайт о тканях и текстиле