Астрономия основное. Что такое астрономия и что она изучает? Солнечная обсерватория в Дели, Индия

Связь астрономии с другими науками. Современная астрономия – фундаментальная физико-математическая наука, развитие которой неразрывно связано с научно-техническим прогрессом. Разделы астрономии: Астрофизика – наука, изучающая природу небесных тел. Небесная механика – наука, изучающая законы движения небесных тел. Однако астрономия не только опирается на данные других наук, но и способствует развитию последних. Данные астрономии о строении и эволюции Вселенной, о месте в ней человека составляют неотъемлемую часть научного мировоззрения.

Слайд 8 из презентации «Астрономия как наука» . Размер архива с презентацией 391 КБ.

Астрономия 11 класс

краткое содержание других презентаций

«Планеты» - Учреждений: Физика, Астрономия.7-11 кл. / Сост. Фотографии Урана. На Марсе имеются глубокие каньоны, гигантские вулканы и обширные пустыни. Меркурий. Характеристика Меркурия. Сатурн, шестая от Солнца планета, имеет удивительную систему колец. Земля обладает магнитным и электрическим полями. Луна - единственный внеземной мир в космосе, который посетили люди. Фотографии Юпитера. Солнечное затмение 11.08. 99. Скорость обращения Земли по эллиптической орбите вокруг Солнца равна - 29,765 км/с.

«Астрономия как наука» - Достижения античной астрономии обобщил александрийский астроном Клавдий Птолемей. Список использованной литературы. Пространственная форма эллиптических галактик – эллипсоиды с разной степенью сжатия. Геоцентрические системы мира. На долю планет приходится 98% момента количества движения всей Солнечной системы. В состав Галактики входят звезды и звездные скопления. Проблема внеземных цивилизаций. Законы Кеплера: Число звезд в Галактике порядка триллиона.

«Планеты и их спутники» - К началу третьего тысячелетия у Юпитера известно 28 спутников. Кора Ганимеда состоит из смеси льда и темных горных пород. В то же время на глубине 1 м температура почти всегда постоянная. Плотность спутника достаточно высокая – 3,04 г/см3. Планируются международные экспедиции для исследования предполагаемых океанов Европы. Температура на поверхности спутников очень низкая, около 60 К. Максимальная звездная величина равна –12,7m.

«Человечество в космосе» - " На службе геологии". Человечества. Глобальные проблемы. Отметим три основные направления космизации производства. " Мирное освоение космоса". Э. Циолковский. Полеты в космос открывали новую страницу в развитии систем и средств связи. " Вперед, и только вперед!". " Внимание, говорит и показывает космос!".

«Гипотезы происхождения Солнечной системы» - МОУ «СОШ №50», г. Пермь. Гипотеза Лапласа. Бюффон не задаётся вопросом о происхождении комет и Солнца. Подобное начало, надо сказать, встречалось и в древнегреческих философских трудах. Гипотезы образования солнечной системы. Но зато Лаплас знал и критически отзывался о предположениях своего соотечественника Бюффона. Гипотеза Канта. Всё остальное развитие Мира происходит без участия Творца. Так в Хаосе появились первые сгущения материи.

Небесный свод, горящий славой,
Таинственно глядит из глубины,
И мы плывем, пылающею бездной
Со всех сторон окружены.
Ф. Тютчев

Урок1/1

Тема : Предмет астрономии.

Цель : Дать представление об астрономии - как наука, связи с другими науками; познакомится с историей, развитием астрономии; инструментами для наблюдений, особенности наблюдений. Дать представление о строении и масштабах Вселенной. Рассмотреть решение задач на нахождение разрешающей способности, увеличения и светосила телескопа. Профессия астронома, значение для народного хозяйства. Обсерватории. Задачи :
1. Обучающая : ввести понятия астрономии, как науке и основных разделах астрономии, объектах познания астрономии: космических объектах, процессах и явлениях; методах астрономических исследований и их особенностях; обсерватории, телескопа и его различных видов. Истории астрономии и связи с другими науками. Роли и особенности наблюдений. Практическом применении астрономических знаний и средств космонавтики.
2. Воспитывающая : историческая роль астрономии в формировании представления человека об окружающем мире и развитии других наук, формирование научного мировоззрения учащихся в ходе знакомства с некоторыми философскими и общенаучными идеями и понятиями (материальности, единства и познаваемости мира, пространственно-временными масштабами и свойствами Вселенной, универсальностью действия физических законов во Вселенной). Патриотическое воспитание при ознакомлении с ролью российской науки и техники в развитии астрономии и космонавтики. Политехническое образование и трудовое воспитание при изложении сведений о практическом применении астрономии и космонавтики.
3. Развивающая : развития познавательных интересов к предмету. Показать, что мысль человеческая всегда стремится к познанию неизвестного. Формирование умений анализировать информацию, составлять классификационные схемы.
Знать: 1-й уровень (стандарт) - понятие астрономии, основных ее разделах и этапах развития, месте астрономии среди других наук и практическом применении астрономических знаний; иметь первоначальное понятие о методах и инструментах астрономических исследований; масштабах Вселенной, космических объектах, явлениях и процессах, свойства телескопа и его виды, значение астрономии для народного хозяйства и практических нужд человечества. 2-й уровень - понятие астрономии, системы, роль и особенности наблюдений, свойства телескопа и его виды, связь с другими предметами, преимущества фотографических наблюдений, значение астрономии для народного хозяйства и практических нужд человечества. Уметь: 1-й уровень (стандарт) - пользоваться учебником и справочным материалом, строить схемы простейших телескопов разных видов, наводить телескоп на заданный объект, искать в Интернет информацию по выбранной астрономической теме. 2-й уровень - пользоваться учебником и справочным материалом, строить схемы простейших телескопов разных видов, вычислять разрешающую способность, светосилу и увеличение телескопов, проводить наблюдения с помощью телескопа заданного объекта, искать в Интернет информацию по выбранной астрономической теме.

Оборудование : Ф. Ю. Зигель “Астрономия в ее развитии”, Теодолит, Телескоп, плакаты “телескопы”, “Радиоастрономия”, д/ф. “Что изучает астрономия”, «Крупнейшие астрономические Обсерватории», к/ф «Астрономия и мировоззрение», "астрофизические методы наблюдений". Глобус Земли, диапозитивы: фотографии Солнца, Луны и планет, галактик. CD- "Red Shift 5.1" или фотографии и иллюстрации астрономических объектов из мультимедийного диска «Мультимедиа библиотека по астрономии». Показать Календарь Наблюдателя на сентябрь (взять с сайта Астронет), пример астрономического журнала (электронного, например Небосвод). можно показать отрывок из фильма Астрономия (ч.1, фр. 2 Самая древняя наука).

Межпредметная связь : Прямолинейное распространение, отражение, преломление света. Построение изображений, даваемых тонкой линзой. Фотоаппарат (физика, VII кл). Электромагнитные волны и скорость их распространения. Радиоволны. Химическое действие света (физика, X кл).

Ход урока :

Вводная беседа (2 мин)

  1. Учебник Е. П. Левитан; общая тетрадь - 48 листов; экзамены по желанию.
  2. Астрономия - новая дисциплина в курсе школы, хотя вкратце с некоторыми вопросами вы знакомы.
  3. Как работать с учебником.
  • проработать (а не прочитать) параграф
  • вникнуть в сущность, разобраться с каждым явлениями и процессами
  • проработать все вопросы и задания после параграфа, кратко в тетрадях
  • контролировать свои знания по перечню вопросов в конце темы
  • дополнительно материал посмотреть в Интернете

Лекция (новый материал) (30 мин) Начало - демонстрация видео клипа с CD (или моей презентации).

Астрономия [греч. Астрон (astron) - звезда, номос (nomos) -закон] - наука о Вселенной, завершающая естественно-математический цикл школьных дисциплин. Астрономия изучает движение небесных тел (раздел “небесная механика”), их природу (раздел “астрофизика”), происхождение и развитие (раздел “космогония”) [Астрономия - наука о строении, происхождении и развитии небесных тел и их систем =, то есть наука о природе]. Астрономия - единственная наука, которая получила свою музу-покровительницу - Уранию.
Системы (космические): - все тела во Вселенной образуют системы различной сложности.

  1. - Солнце и движущиеся вокруг (планеты, кометы, спутники планет, астероиды), Солнце - самосветящиеся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. /Таких звездных систем с планетами и другими телами во Вселенной огромное количество/
  2. Видимые на небе звезды , в том числе Млечный путь - это ничтожная доля звезд, входящих в состав Галактики (или называют нашу галактику Млечный Путь)- системы звезд, их скоплений и межзвездной среды. /Таких галактик множество, свет от ближайших идет к нам миллионы лет. Возраст Галактик 10-15 млрд. лет/
  3. Галактики объединяются в своего рода скопления (системы)

Все тела находятся в непрерывном движении, изменении, развитии. Планеты, звезды, галактики имеют свою историю, нередко исчисляемую млрд. лет.

На схеме отражена системность и расстояния:
1 астрономическая единица = 149, 6 млн.км (среднее расстояние от Земли до Солнца).
1пк (парсек) = 206265 а.е. = 3, 26 св. лет
1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год. 1 световой год равен 9,46 миллионам миллионов километров!

История астрономии (можно фрагмент фильма Астрономия (ч.1, фр. 2 Самая древняя наука))
Астрономия - одна из самых увлекательных и древнейших наук о природе - исследуется не только настоящее, но и далекое прошлое окружающего нас макромира, а также вырисовать научную картину будущего Вселенной.
Потребность в астрономических знаниях диктовалась жизненной необходимостью:

Этапы развития астрономии
I-й Античный мир (до н. э). Философия →астрономия → элементы математики (геометрия).
Древний Египет, Древняя Ассирия, Древние Майя, Древний Китай, Шумеры, Вавилония, Древняя Греция. Ученые, внесшие значительный вклад в развитие астрономии: ФАЛЕС Милетский (625-547, Др.Греция), ЕВДОКС Книдский (408- 355, Др. Греция), АРИСТОТЕЛЬ (384-322, Македония, Др. Греция), АРИСТАРХ Самосский (310-230, Александрия, Египет), ЭРАТОСФЕН (276-194, Египет), ГИППАРХ Родосский (190-125г, Др.Греция).
II-ой Дотелескопический период. (наша эра до 1610г). Упадок науки и астрономии. Развал Римской империи, набеги варваров, зарождение христианства. Бурное развитие арабской науки. Возрождение науки в Европе. Современная гелиоцентрическая система строения мира. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Клавдий ПТОЛЕМЕЙ (Клавдиус Птоломеус )(87-165, Др. Рим), БИРУНИ, Абу Рейхан Мухаммед ибн Ахмед аль - Бируни (973-1048, совр. Узбекистан), Мирза Мухаммед ибн Шахрух ибн Тимур (Тарагай ) УЛУГБЕК (1394 -1449, совр. Узбекистан), Николай КОПЕРНИК (1473-1543,Польша), Тихо(Тиге) БРАГЕ (1546- 1601, Дания).
III-ий Телескопический до появления спектроскопии (1610-1814гг). Изобретение телескопа и наблюдения с его помощью. Законы движения планет. Открытие планеты Уран. Первые теории образования Солнечной системы. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Галилео ГАЛИЛЕЙ (1564-1642, Италия), Иоганн КЕПЛЕР (1571-1630, Германия), Ян ГАВЕЛИЙ (ГАВЕЛИУС ) (1611-1687, Польша), Ганс Христиан ГЮЙГЕНС (1629-1695, Нидерланды), Джованни Доминико (Жан Доменик) КАССИНИ> (1625-1712, Италия-Франция), Исаак НЬЮТОН (1643-1727, Англия), Эдмунд ГАЛЛЕЙ ( ХАЛЛИ , 1656-1742, Англия), Вильям (Уильям) Вильгельм Фридрих ГЕРШЕЛЬ (1738-1822, Англия), Пьер Симон ЛАПЛАС (1749-1827, Франция).
IV-ый Спектроскопия . До фотографии. (1814-1900гг). Спектроскопические наблюдения. Первые определения расстояния до звезд. Открытие планеты Нептун. Ученые, внесшие значительный вклад в развитие астрономии в данный период: Йозеф фон ФРАУНГОФЕР (1787-1826, Германия), Василий Яковлевич (Фридрих Вильгельм Георг) СТРУВЕ (1793-1864, Германия-Россия), Джордж Бидделл ЭРИ (ЭЙРИ , 1801-1892, Англия), Фридрих Вильгельм БЕССЕЛЬ (1784-1846, Германия), Иоганн Готфрид ГАЛЛЕ (1812-1910, Германия), Уильям ХЕГГИНС (Хаггинс , 1824-1910, Англия), Анжело СЕККИ (1818-1878, Италия), Федор Александрович БРЕДИХИН (1831-1904, Россия), Эдуард Чарльз ПИКЕРИНГ (1846-1919, США).
V-ый Современный период (1900-наст.время). Развитие применения в астрономии фотографии и спектроскопических наблюдений. Решение вопроса об источнике энергии звезд. Открытие галактик. Появление и развитие радиоастрономии. Космические исследования. Подробнее смотрите .

Связь c другими предметами.
ПСС т 20 Ф. Энгельс - “Сперва астрономия, которая уже из-за времен года абсолютно необходима для пастушеских и земледельческих работ. Астрономия может развиваться только при помощи математики. Следовательно приходилось заниматься и математикой. Далее, на известной ступени развития земледелия в известных странах (поднятие воды для орошения в Египте), а в особенности вместе с возникновением городов, крупных построек и развитием ремесла развивалось и механика. Вскоре она становится необходимой для судоходства и военного дела. Она так же передается в помощь математике и таким образом способствует ее развитию”.
Астрономия сыграла столь ведущую роль в истории науки, что многие ученые считают - “астрономию наиболее существенным фактором развития от ее возникновения - вплоть до Лапласа, Лагранжа и Гаусса” - они черпали из нее задания и создавали методы решения этих задач. Астрономия, математика и физика никогда не теряли взаимосвязи, что нашло отражение в деятельности многих ученых.


Взаимодействие астрономии и физики продолжает оказывать влияние на развитие других наук, технологии, энергетики и различных отраслей народного хозяйства. Пример - создание и развитие космонавтики. Разрабатываются способы удержания плазмы в ограниченном объеме, концепция "бесстолкновительной" плазмы, МГД-генераторы, квантовые усилители излучения (мазеры) и т. д.
1 - гелиобиология
2 - ксенобиология
3 - космическая биология и медицина
4 - математическая география
5 - космохимия
А - сферическая астрономия
Б - астрометрия
В - небесная механика
Г - астрофизика
Д - космология
Е - космогония
Ж - космофизика
Астрономию и химию связывают вопросы исследования происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией, изучает химический состав и дифференцированное внутреннее строение космических тел, влияние космических явлений и процессов на протекание химических реакций, законы распространенности и распределения химических элементов во Вселенной, сочетание и миграцию атомов при образовании вещества в космосе, эволюцию изотопного состава элементов. Большой интерес для химиков представляют исследования химических процессов, которые из-за их масштабов или сложности трудно или совсем невоспроизводимых в земных лабораториях (вещество в недрах планет, синтез сложных химических соединений в темных туманностях и т. д.).
Астрономию, географию и геофизику связывает изучение Земли как одной из планет Солнечной системы, ее основных физических характеристик (фигуры, вращения, размеров, массы и т. д.) и влияния космических факторов на географию Земли: строение и состав земных недр и поверхности, рельеф и климат, периодические, сезонные и долговременные, местные и глобальные изменения в атмосфере, гидросфере и литосфере Земли - магнитные бури, приливы, смена времен года, дрейф магнитных полей, потепления и ледниковые периоды и т. д., возникающие в результате воздействия космических явлений и процессов (солнечной активности, вращения Луны вокруг Земли, вращения Земли вокруг Солнца и др.); а также не потерявшие своего значения астрономические методы ориентации в пространстве и определения координат местности. Одной из новых наук стало космическое землеведение - совокупность инструментальных исследований Земли из космоса в целях научной и практической деятельности.
Связь астрономии и биологии определяется их эволюционным характером. Астрономия изучает эволюцию космических объектов и их систем на всех уровнях организации неживой материи аналогично тому, как биология изучает эволюцию живой материи. Астрономию и биологию связывают проблемы возникновения и существования жизни и разума на Земле и во Вселенной, проблемы земной и космической экологии и воздействия космических процессов и явлений на биосферу Земли.
Связь астрономии с историей и обществоведением , изучающим развитие материального мира на качественно более высоким уровне организации материи, обусловлена влиянием астрономических знаний на мировоззрение людей и развитие науки, техники, сельского хозяйства, экономики и культуры; вопрос о влиянии космических процессов на социальное развитие человечества остается открытым.
Красота звездного неба будила мысли о величии мироздания и вдохновлял писателей и поэтов . Астрономические наблюдения несут в себе мощный эмоциональный заряд, демонстрируют могущество человеческого разума и его способности познавать мир, воспитывают чувство прекрасного, способствуют развитию научного мышления.
Связь астрономии с "наукой наук" - философией - определяется тем, что астрономия как наука имеет не только специальный, но и общечеловеческий, гуманитарный аспект, вносит наибольший вклад в выяснение места человека и человечества во Вселенной, в изучение отношения "человек - Вселенная". В каждом космическом явлении и процессе видны проявления основных, фундаментальных законов природы. На основе астрономических исследований формируются принципы познания материи и Вселенной, важнейшие философские обобщения. Астрономия оказала влияние на развитие всех философских учений. Невозможно сформировать физическую картину мира в обход современных представлений о Вселенной - она неминуемо утратит свое мировоззренческое значение.

Современная астрономия - фундаментальная физико-математическая наука, развитие которой непосредственно связано с НТП. Для исследования и объяснения процессов используется весь современный арсенал разнообразных, вновь возникших разделов математики и физики. Существует и .

Основные разделы астрономии:

Классическая астрономия

объединяет ряд разделов астрономии, основы которых были разработаны до начала ХХ века:
Астрометрия:

Сферическая астрономия

изучает положение, видимое и собственное движение космических тел и решает задачи, связанные с определением положений светил на небесной сфере, составлением звездных каталогов и карт, теоретическим основам счета времени.
Фундаментальная астрометрия ведет работу по определению фундаментальных астрономических постоянных и теоретическому обоснованию составления фундаментальных астрономических каталогов.
Практическая астрономия занимается определением времени и географических координат, обеспечивает Службу Времени, вычисление и составление календарей, географических и топографических карт; астрономические методы ориентации широко применяются в мореплавании, авиации и космонавтике.
Небесная механика исследует движение космических тел под действием сил тяготения (в пространстве и времени). Опираясь на данные астрометрии, законы классической механики и математические методы исследования, небесная механика определяет траектории и характеристики движения космических тел и их систем, служит теоретической основой космонавтики.

Современная астрономия

Астрофизика изучает основные физические характеристики и свойства космических объектов (движение, строение, состав и т.д.), космических процессов и космических явлений, подразделяясь на многочисленные разделы: теоретическая астрофизика; практическая астрофизика; физика планет и их спутников (планетология и планетографии); физика Солнца; физика звезд; внегалактическая астрофизика и т. д.
Космогония изучает происхождение и развитие космических объектов и их систем (в частности Солнечной системы).
Космология исследует происхождение, основные физические характеристики, свойства и эволюцию Вселенной. Теоретической основой ее являются современные физические теории и данные астрофизики и внегалактической астрономии.

Наблюдения в астрономии.
Наблюдения - основной источник информации о небесных телах, процессах, явлениях, происходящих во Вселенной, так как их потрогать и провести опыты с небесными телами невозможно (возможность проведения экспериментов вне Земли возникла только благодаря космонавтике). Они имеют и особенности в том, что для изучения какого либо явления необходимы:

  • длительные промежутки времени и одновременное наблюдение родственных объектов (пример-эволюция звезд)
  • необходимость указания положения небесных тел в пространстве (координаты), так как все светила кажутся далекими от нас (в древности возникло понятие небесной сферы, которая как единое целое вращается вокруг Земли)

Пример: Древний Египет, наблюдая за звездой Сотис (Сириус) определили начало разлива Нила, установили продолжительность года в 4240г до н.э. в 365 дней. Для точности наблюдений, нужны были приборы .
1). Известно, что Фалес Милетский (624-547, Др. Греция) в 595г до н.э. впервые использовал гномон (вертикальный стержень, приписывается, что создал его ученик Анаксимандр) - позволил не только быть солнечными часами, но и определять моменты равноденствия, солнцестояния, продолжительности года, широту наблюдения и т.д.
2). Уже Гиппарх (180-125г, Др. Греция) использовал астролябию, что позволило ему измерить параллакс Луны, в 129г до н.э., установить продолжительность года в 365,25сут, определить процессию и составить в 130г до н.э. звездный каталог на 1008 звезд и т.д.
Существовали астрономический посох, астролабон (первая разновидность теодолита), квадрант и т.д. Наблюдения проводятся в специализированных учреждениях - , возникших еще на первом этапе развития астрономии до НЭ. Но настоящее астрономическое исследование началось с изобретением телескопа в 1609г.

Телескоп - увеличивает угол зрения, под которым видны небесные тела (разрешающая способность ), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила ). Поэтому в телескоп можно рассмотреть невидимые невооруженным глазом поверхности ближайших к Земле небесных тел и увидеть множество слабых звезд. Все зависит от диаметра его объектива. Виды телескопов: и радио (Показ телескопа, плакат "Телескопы", схемы). Телескопы: из истории
= оптические

1. Оптические телескопы ()


Рефрактор (refracto-преломляю)- используется преломление света в линзе (преломляющий). “Зрительная труба” сделана в Голландии [Х. Липперсгей]. По приблизительному описанию ее изготовил в 1609г Галилео Галилей и впервые направил в ноябре 1609г на небо, а в январе 1610г открыл 4 спутника Юпитера.
Самый большой в мире рефрактор изготовлен Альваном Кларк (оптиком из США) 102см (40 дюймов) и установлен в 1897г в Йерской обсерватории (близь Чикаго). Им же был изготовлен 30 дюймовый и установлен в 1885г в Пулковской обсерватории (разрушен в годы ВОВ).
Рефлектор (reflecto-отражаю)- используется вогнутое зеркало, фокусирующее лучи. В 1667г первый зеркальный телескоп изобрел И. Ньютон (1643-1727, Англия) диаметр зеркала 2,5см при 41 х увеличении. В те времена зеркала делались из сплавов металла, быстро тускнели.
Самый Большой в мире телескоп им. У. Кека установлен в 1996 году диаметр зеркало 10м (первый из двух, но зеркало не монолитное, а состоит из 36 зеркал шестиугольной формы) в обсерватории Маун-Кеа (Калифорния, США).
В 1995г введен первый из четырех телескопов (диаметр зеркала 8м) (обсерватория ESO, Чили). До этого самый крупный был в СССР, диаметр зеркала 6м, установлен в Ставропольском крае (гора Пастухова, h=2070м) в Специальной астрофизической обсерватории АН СССР (монолитное зеркало 42т, 600т телескоп, можно видеть звезды 24 м).

Зеркально - линзовый. Б.В. ШМИДТ (1879-1935, Эстония) построил в 1930г (камера Шмидта) с диаметром объектива 44 см. Большой светосилы, свободный от комы и большим полем зрения, поставив перед сферическим зеркалом корректирующую стеклянную пластину.
В 1941 году Д.Д. Максутов (СССР) сделал менисковый, выгоден короткой трубой. Применяется любителями - астрономами.
В 1995г для оптического интерферометра введен в строй первый телескоп с 8м зеркалом (из 4 -х) с базой 100м (пустыне АТАКАМА, Чили; ESO).
В 1996г первый телескоп диаметром 10м (из двух с базой 85м) им. У. Кека введен в обсерватории Маун - Кеа (Калифорния, Гавайские острова, США)
любительские телескопы

  • непосредственные наблюдения
  • фотографировать (астрограф)
  • фотоэлектрические - датчик, колебание энергии, излучений
  • спектральные - дают сведения о температуре, химическом составе, магнитных полях, движений небесных тел.
Фотографические наблюдения (перед визуальными) имеет преимущества:
  1. Документальность - способность фиксировать происходящее явление и процессы и долгое время сохранять полученную информацию.
  2. Моментальность - способность регистрировать кратковременные события.
  3. Панорамность - способность запечатлеть одновременно несколько объектов.
  4. Интегральность - способность накапливать свет от слабых источников.
  5. Детальность - способность рассматривать детали объекта на изображении.
В астрономии расстояние между небесными телами измеряют углом → угловое расстояние: градусы - 5 о,2, минуты - 13",4, секунды - 21",2 обычным глазом мы видим рядом 2 звезды (разрешающая способность ), если угловое расстояние 1-2". Угол, под которым мы видим диаметр Солнца и Луны ~ 0,5 о = 30".
  • В телескоп мы предельно видим: (разрешающая способность ) α= 14 " /D или α= 206265·λ/D [где λ - длина световой волны, а D - диаметр объектива телескопа] .
  • Количество света, собранного объективом - называется светосилой . Светосила Е =~S (или D 2) объектива. Е=(D/d хр ) 2 , где d хр - диаметр зрачка человека в обычных условиях 5мм (максимум в темноте 8мм).
  • Увеличение телескопа =Фокусное расстояние объектива/Фокусное расстояние окуляра. W=F/f=β/α .
При сильном увеличении >500 х видно колебания воздуха, поэтому телескоп необходимо располагать как можно выше в горах и где небо часто безоблачно, а еще лучше за пределами атмосферы (в космосе).
Задача (самостоятельно-3 мин): Для 6м телескопа- рефлектора в Специальной астрофизической обсерватории (на северном Кавказе) определить разрешающую способность, светосилу и увеличение, если используется окуляр с фокусным расстоянием 5см (F=24м). [Оценка по скорости и правильности решения ] Решение: α= 14 " /600 ≈ 0,023" [при α= 1" спичечная коробка видна на расстоянии 10км]. Е=(D/d хр) 2 =(6000/5) 2 = 120 2 =14400 [во столько раз собирает больше света, чем глаз наблюдателя] W=F/f=2400/5=480
2. Радиотелескопы - преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических. Представляют собой чашу (подобие локатора. плакат "Радиотелескопы"). Радиоастрономия получило развитие после войны. Наибольшие сейчас радиотелескопы это неподвижные РАТАН- 600, Россия (вступил в строй в 1967г в 40 км от оптического телескопа, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м), Аресибо (Пуэрто -Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Из подвижных имеют два радиотелескопа 100м чашу.


Небесные тела дают излучение: свет, инфракрасное, ультрафиолетовое, радиоволны, рентгеновское, гамма - излучения. Так как атмосферы мешает прониканию лучей к земле c λ< λ света (ультрафиолетовые, рентгеновские, γ - излучения), то последнее время на орбиту Земли выводятся телескопы и целые орбитальные обсерватории : (т.е развиваются внеатмосферные наблюдения).

l. Закрепление материала .
Вопросы:

  1. Какие сведения астрономические вы изучали в курсах других предметов? (природоведение, физики, истории и т.д.)
  2. В чем специфика астрономии по сравнению с другими науками о природе?
  3. Какие типы небесных тел вам известны?
  4. Планеты. Сколько, как называются, порядок расположения, самая большая и т.д.
  5. Какое значение в народном хозяйстве имеет сегодня астрономия?

начения в народном хозяйстве:
- Ориентирование по звездам для определения сторон горизонта
- Навигация (мореходство, авиация, космонавтика) - искусство прокладывать путь по звездам
- Исследование Вселенной с целью понять прошлое и спрогнозировать будущее
- Космонавтика:
- Исследование Земли с целью сохранения ее уникальной природы
- Получение материалов, которые невозможно получение в земных условиях
- Прогноз погоды и предсказание стихийных бедствий
- Спасение терпящих бедствие судов
- Исследования других планет для прогнозирования развития Земли
Итог:

  1. Что нового узнали. Что такое астрономия, назначение телескопа и его виды. Особенности астрономии и т.д.
  2. Надо показать пользование CD- "Red Shift 5.1", Календарь Наблюдателя, пример астрономического журнала (электронного, например Небосвод). В Интернете показать , Астротоп , портал:Астрономия в Википедии , - используя которые можно получить информации по интересующему вопросу или найти её.
  3. Оценки.

Домашнее задание: Введение, §1; вопросы и задания для самоконтроля (стр11), №6 и 7 составить схемы, желательно бы на уроке; стр29-30 (п.1-6) - главные мысли.
При подробном изучении материала об астрономических инструментах можно предложить ученикам вопросы и задачи:
1. Определите основные характеристики телескопа Г. Галилея.
2. В чем преимущества и недостатки оптической системы рефрактора Галилея по сравнению с оптической схемой рефрактора Кеплера?
3. Определите основные характеристики БТА. Во сколько раз БТА мощнее МШР?
4. В чем преимущества телескопов, установленных на борту космических аппаратов?
5. Какими условиями должно удовлетворять место для строительства астрономической обсерватории?

Урок оформили члены кружка “Интернет технологии” 2002г: Прытков Денис (10кл) и Дисенова Анна (9кл) . Изменен 01.09.2007г

«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель "Планетарий", которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 1 Предмет астрономии Тема 1. Предмет астрономии. Созвездия. Ориентирование по звездному небу 784,5 кб 127,8 кб 450,7 кб
Шкала электромагнитных волн с приемниками излучения 149,2 кб
  1. Потребность счета времени (календарь). (Древний Египет - замечена взаимосвязь с астрономическими явлениями)
  2. Находить дорогу по звездам, особенно мореплавателям (первые парусные суда появились за 3 тыс. лет до н. э)
  3. Любознательность - разобраться в происходящих явлениях и поставить их себе на службу.
  4. Забота о своей судьбе, народившая астрологию.

Наука, которая изучает Вселенную и является одной из самых древних у человечества, - астрономия. Это слово состоит из двух греческих: "номос" - "закон", и "астрон" - "светило, звезда". В совокупности можно перевести этот термин как "закон звёзд". Астрономия - это целые тысячелетия наблюдений за небом, когда накапливаются разнообразные знания. Нужно отметить, что по сравнению с другими науками уровень этой науки был чрезвычайно высок уже в древности.

Тогда и сейчас

Названия созвездий мы знаем неизменно одни и те же на протяжении многих десятков веков. Наши далёкие предки знали их все, они умели рассчитать восход и заход Солнца, планет, Луны, всех самых крупных звёзд задолго до наступления нашей эры. Более того, учёные уже тогда умели предсказывать солнечные и лунные затмения. Астрономия - это главная наука в жизни древнего человека. Охотники по звёздам находили дорогу к дому, моряки по звёздам вели свои корабли в открытом океане. Все сельскохозяйственные работы были связаны с установленным циклом смен времён года, по светилам рассчитывалось время и составлялись календари. Даже судьбу астрологи предсказывали по звёздам.

Сейчас во многом из вышеперечисленного надобность отпала. Курс кораблей и разливы рек уже не нужно высчитывать по песочным часам, потому что появились всевозможные технические средства. Однако астрономия - это наука, у которой не может быть окончания в её развитии. И сейчас вся космонавтика зиждется на её основах, с помощью этой науки человечество пользуется системами связи, телевидением и наблюдает Землю из Космоса. Теснейшим образом теперь связываются астрономия и математика, астрономия и физика, они имеют общие методы познания, которые широко используются.

Две астрономии

Суть астрономии в древности - это наблюдение. В этой науке невозможны эксперименты, как в физике или химии, поскольку объекты изучения людям недоступны. Но значение астрономии в жизни человека и сегодня очень большое. Вся информация о небесных телах и теперь добывается из получаемых электромагнитных излучений. Но в последние несколько десятилетий учёные получили возможность изучать некоторые небесные объекты непосредственно - автоматические станции зондируют атмосферу ближайших планет, изучается их грунт.

Именно этот факт разделил астрономию на две основные части - теоретическую и наблюдательную. Последняя имеет целью получать данные из наблюдений за небесными телами, которые потом анализируются с помощью физики и её основных законов. А теоретики-астрономы разрабатывают компьютерные, математические и аналитические модели, с помощью которых описывают астрономические явления и объекты. Нужно ли говорить, что значение астрономии как науки для человечества просто огромно? Ведь эти две ветви не существуют отдельно сами по себе, они дополняют друг друга. Теория ищет объяснения по результатам наблюдений, а наблюдатели подтверждают или нет все гипотезы и теоретические выводы.

Астрономия как философская наука

Определение науки "астрономия" появилось во времена античности и благополучно живёт в наши дни. Это изучение фундаментальных законов природы нашего мира, теснейшим образом связанного с большим космосом. Именно поэтому поначалу астрономия трактовалась как наука философская. Собственный мир с её помощью познаётся через знания небесных объектов - звёзд, планет, комет, галактик, а также тех феноменов, которые то и дело происходят за пределами земной атмосферы - сияние Солнца, солнечный ветер, космическая радиация и так далее.

Даже лексическое значение слова "астрономия" говорит об этом же: закон звёзд действует и здесь, на Земле, поскольку она является частью огромного космоса, который развивается согласно единому закону. Именно благодаря ему человечеству подарены эволюция, физика, химия, метеорология и любая другая наука. Всё в мире развивается посредством определённого движения небесных тел: формируются и развиваются галактики, умирают и вновь вспыхивают звёзды. Следует всегда помнить, с чего начиналась всякая другая наука. Большое несчастье, что астрономия в школе сейчас отсутствует. Эти знания и понимание огромности и ценности мира не заменить ничем.

Двадцатый век

Итак, наблюдательная астрономия и теоретическая астрофизика составили профессиональную науку. Неустанно создавались всё новые инструменты для изучения космоса плюс к уже изобретённому в незапамятные времена телескопу. Информация собиралась и обрабатывалась, затем внедрялась теоретиками-астрофизиками в создаваемые ими модели - аналитические или компьютерные.

Значение слова "астрономия" приобрело огромный вес во всех областях человеческой науки, поскольку даже знаменитая теория относительности выстроена из фундаментальных законов астрономической физики. И, что интересно, большинство открытий сделано астрономами-любителями. Это одна из очень немногих наук, где люди, не относящиеся к ней, могут участвовать в наблюдениях и собирать для неё данные.

Астрономия и астрология

Современные школьники (да и студенты) вполне часто путают науку и систему верований, всё-таки сказывается отсутствие соответственных уроков в школьных программах. Астрология давно считается лженаукой, в которой утверждается, что любое человеческое дело, даже самое малое, зависит от положения светил. Конечно, два этих названия происходят из одного корня, но системы познания у той и другой абсолютно противоположные.

Астрономия же позволила человеку сделать громадный скачок в понимании законов Вселенной. Эта наука непознаваема до конца, всегда останется больше вопросов, на которые нет ответа, чем тех, на которые ответ найден. Сколько бы ни строилось устройств в космосе и на Земле, сколько бы ни совершалось ошеломляющих мир открытий - это только капля в океане знаний. В данный момент мы ещё не можем наверняка утверждать ни происхождение звёздной массы во всём её спектре, ни положительно или отрицательно ответить на вопрос о существовании другой жизни во Вселенной. Парадокс Ферми не разъяснён. Природа темноты не ясна. О временном периоде существования Вселенной мы ничего не знаем, как и о конкретной цели её существования.

Астрономия и история

Научившись различать звёзды и планеты, астрономы древности привязали эти знания к трансцендентности, идентифицировав все известные небесные тела с духами и богами. Тогда и появилась тупиковая ветвь науки - астрология, поскольку движение всех космических объектов крепко привязывалось к чисто земным явлениям - смене сезонов, дождям, засухам.

Тогда появились волхвы (священники, жрецы и тому подобные культовые работники), которые и считались профессиональными астрономами. Многие древние постройки - китайские храмы или Стоунхэндж, например, явно сочетали две функции - астрономическую и религиозную.

Восток и Запад

Полезного было совершено настолько много, что древние знания вполне смогли послужить основанием науки, наиболее других процветающей сегодня. По движению светил выстраивались календари - древнеримский жив до сих пор. В Китае в 2300 годах до нашей эры уже функционировала астрономическая обсерватория, она на снимке.

Оракулы в Китае уже четыре тысячи лет хранят рисунки затмений и появления новых звёзд. С шестого века до нашей эры существуют детальные астрономические наблюдения в записях - в Китае. А в Европе весь этот бум начинался только в семнадцатом веке нашей эры. Китайцы же много тысяч лет абсолютно правильно предсказывают появление комет. Там же около шести тысяч лет назад был изготовлен и первый звёздный атлас.

Древняя Греция и арабский мир

Европа в Средние века целиком и полностью прекратила всё развитие науки на своих территориях, даже греческие открытия, которые во многом оказались верны и множеством ценных вкладов внесены в науку астрономию, были преданы анафеме. Классическая античность именно поэтому дошла до наших дней в весьма скудном количестве сводных записей и компиляций.

Зато астрономия процветала в арабских странах, и священники самых дальних приходов христиан две тысячи лет назад умели рассчитать по ходу светил точную дату Пасхи. Арабы во множестве переводили труды астрономов Древней Греции, и именно там рукописи были найдены потомками в глубине сохранившихся библиотек. В арабских странах строились обсерватории уже с девятого века нашей эры. В Персии поэт и учёный Омар Хайям сопоставил огромное количество таблиц и реформировал календарь, сделав его точнее юлианского и ближе к григорианскому. В этом ему помогли постоянные наблюдения небесных тел.

Небесная механика

Вселенская гравитация стала известна миру благодаря Исааку Ньютону. Теперешние школьники слышали это имя только в связи с тремя законами физики. То, что законы эти вплотную связаны с небесной механикой, им невдомёк, поскольку уроков астрономии в школе нет.

Будет огромным счастьем узнать, что этот необходимейший предмет снова в строю. Учёный секретарь из Института космических исследований Российской академии наук Александр Захаров уверен, что существующий в стране дефицит учителей астрономии может быть пополнен быстро в случае возвращения этой дисциплины в учебный план. Директор планетария в Новосибирске Сергей Масликов уверен, что планируемое возвращение астрономии в школу вряд ли может состояться ранее, чем через пять-шесть лет. Однако министр образования и науки РФ Ольга Васильева заявляет, что этот час в неделю для изучения предмета астрономии школьникам нужно вернуть как можно быстрее.

Предмет астрономии Астрономия - наука о Вселенной. Астрономия изучает космические объекты, космические явления и космические процессы. Астрономия изучает основные физические характеристики, происхождение, строение, состав, движение и эволюцию космических объектов.

Предмет астрономии Космические объекты - это космические тела и обладающие определенной организацией системы космических тел. Под космическими телами мы будем понимать все рассматриваемые астрономией физические тела - структурные элементы Вселенной.

Предмет астрономии Космические тела, входящие в состав космических систем, обычно имеют общее происхождение, взаимосвязаны гравитационными и магнитными полями и перемещаются в пространстве как единое целое.

Предмет астрономии Космическими явлениями называются физические явления, возникающие при взаимодействии космических тел и протекании космических процессов.

Предмет астрономии Космические процессы представляют собой совокупность физических процессов, лежащих в основе возникновения, существования и развития космических объектов, основные этапы их эволюции.

Основные разделы астрономии Сферическая астрономия изучает положение, видимое и собственное движение космических тел и решает задачи, связанные с определением положений светил на небесной сфере, составлением звездных каталогов и карт, теоретическими основами счета времени.

Основные разделы астрономии Фундаментальная астрометрия ведет работу по определению фундаментальных астрономических постоянных и теоретическому обоснованию составления фундаментальных астрономических каталогов.

Основные разделы астрономии Практическая астрономия занимается определением времени и географических координат, обеспечивает Службу Времени, вычисление и составление календарей, географических и топографических карт; астрономические методы ориентации широко применяются в мореплавании, авиации и космонавтике.

Основные разделы астрономии Астрофизика изучает основные физические характеристики и свойства космических объектов (движение, строение, состав и т. д.), космических процессов и космических явлений, подразделяясь на многочисленные разделы: теоретическая астрофизика; практическая астрофизика; физика планет и их спутников (планетология и планетографии); физика Солнца; физика звезд; внегалактическая астрофизика и т. д.

Основные разделы астрономии Космогония изучает происхождение и развитие космических объектов и их систем. Космология исследует происхождение, основные физические характеристики, свойства и эволюцию Вселенной. Теоретической основой ее являются современные физические теории и данные астрофизики и внегалактической астрономии.

Этапы развития астрономии Первая революция в астрономии произошла в различных регионах мира в разное время в промежутке между 1, 5 тыс. лет до н. э. и II век н. э. и была обусловлена прогрессом математических знаний.

Этапы развития астрономии Главными ее достижениями стало создание сферической астрономии и астрометрии, универсальных точных календарей и геоцентрической теории, ставшей итогом развития астрономии античного мира и способствовавшей формированию формально-логического мышления

Этапы развития астрономии Вторая революция в астрономии (XVI-XVII вв.) была обусловлена прогрессом знаний о природе, в первую очередь физических, и сама стимулировала первую революцию естественных наук в XVII-XVIII веках. Для науки того времени характерна теснейшая связь между астрономией и физикой.

Этапы развития астрономии Третья революция в астрономии (50 -70 гг. ХХ века) целиком обусловлена прогрессом физики и ее влиянием на технологию.

Этапы развития астрономии Основные достижения современной астрономии: 1. 2. 3. 4. 5. Объяснение эволюции звезд, основанное на создании их моделей и подтверждающееся данными наблюдений. Исследование общей динамики галактик. Достаточно полные представления о процессах во Вселенной в интервале 7 -10 миллиардов лет от настоящего времени. Подтверждение теории формирования звезд и планетных систем из газопылевых комплексов. Значительное расширение сведений о природе и физических характеристиках планетных тел Солнечной системы и Солнца, полученных в результате космических исследований.

Связь с другими науками Астрономию и химию связывают вопросы исследования происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией

Связь с другими науками Астрономию, географию и геофизику связывает изучение Земли как одной из планет Солнечной системы, ее основных физических характеристик (фигуры, вращения, размеров, массы и т. д.) и влияния космических факторов на географию Земли

Связь с другими науками Связь астрономии и биологии определяется их эволюционным характером. Все космические объекты и их системы, подобно биологическим, эволюционируют с характерными для них шкалами времени. Эволюция неживой и живой материи идет "от простого к сложному"

Связь с другими науками Связь астрономии с "наукой наук" - философией - определяется тем, что астрономия как наука имеет не только специальный, но и общечеловеческий, гуманитарный аспект, вносит наибольший вклад в выяснение места человека и человечества во Вселенной, в изучение отношения "человек - Вселенная".

Связь астрономии с другими науками, практическое значение астрономии

Исследования процессов, происходящих на различных небесных телах, позволяют астрономам изучать материю в таких ее состояниях, какие еще не достигнуты в земных лабораторных условиях. По этой причине астрономия, и в частности астрофизика, тесно связанная с физикой, химией, математикой, способствует развитию последних, а они, как известно, являются основой всœей современной техники. Достаточно сказать, что вопрос о роли внутриатомной энергии впервые был поставлен астрофизиками, а величайшее достижение современной техники - запуск искусственных спутников Земли, орбитальных и межпланетных космических станций невозможен без астрономических знаний.

Исключительно важна роль астрономии в формировании правильного материалистического мировоззрения. Астрономия, изучая небесные явления, исследуя природу, строение и развитие небесных тел, доказывает материальность Вселœенной, ее естественное, закономерное развитие во времени и пространстве без вмешательства каких бы то ни было сверхъестественных сил.

Астрономия с древнейших времён служила людям для определœения времени и местоположения на поверхности Земли, т.е для навигации и геодезии. С запуском первого искусственного спутника Земли в нашей стране в 1957 ᴦ. началась эра космических исследований. Изучение Земли из космоса позволило ещё шире поставить астрономию на службу наук о Земле (геологии, геохимии, геофизики и т.п.).

Особое значение астрономия приобретает в настоящее время, решая задачу предупреждения о столкновении Земли с астероидом или кометой. То, что эта угроза не плод воображения фантастов говорят последствия падения т.н. «тунгусского метеорита». В результате падения, как считает большинство исследователœей ядра небольшой кометы, была уничтожена тайга на огромной территории (площадь вывала леса превысила 2 тыс. кв. км.). как показывают расчеты, столкновение с Землёй астероида диаметром 100 м может происходить раз в 1000 лет. При падении тела таких размеров по усреднённым подсчётам выделится энергия » 5×10 17 дж, что примерно равно взрыву самой мощной термоядерной бомбы и лишь в 20 раз меньше чем суммарная мощность всœех землетрясений на Земле за год. Падение такого тела может привести к локальной катастрофе, которая может быть усугублена аварией на потенциально опасных объектах - атомных или гидроэлектростанциях, химических производствах, а также спровоцировать начало военных действий с применением оружия массового уничтожения. Первой задачей по предотвращению таких катастроф является обнаружение таких тел за годы до столкновения. Роль астрономических наблюдений в решении этой задачи является главной. Более подробно об астероидно-кометной опасности и роли астрономии в её предотвращении сказано в разделœе 11.

Астрономия продолжает оставаться наблюдательной наукой, но недалек тот день, когда астрономические наблюдения будут производиться не только с межпланетных станций и орбитальных обсерваторий, но и с поверхности Луны или других планет.

Литература к разделу

1. Кононович Э.В., Мороз В.И. Общий курс астрономии: учебное пособие/Под ред. В.В. Иванова.- 2-е изд.- М.: Эдиториал УРСС, 2004-544с.

2. Куликовский П.Г. Справочник любителя астрономии. Изд. 5-е - М.:Эдиториал УРСС, 2002. -688с.

3. Ганагина И.Г. Астрономия. - Метод. указ. -Новосибирск: СГГА. - 2002.

4. Климишин И.А. Астрономия наших дней. 2-е издание, “Наука”, 1980-456с.

5. Бронштэн В.А. Тунгусский метеорит. М.: А.Д. Сельянов, 2000-311с.

© 2024 gobelinland.ru
Сайт о тканях и текстиле